рефераты
рефераты
Поиск
Расширенный поиск
рефераты
рефераты
рефераты
рефераты
МЕНЮ
рефераты
рефераты Главная
рефераты
рефераты Астрономия и космонавтика
рефераты
рефераты Биология и естествознание
рефераты
рефераты Бухгалтерский учет и аудит
рефераты
рефераты Военное дело и гражданская оборона
рефераты
рефераты Государство и право
рефераты
рефераты Журналистика издательское дело и СМИ
рефераты
рефераты Краеведение и этнография
рефераты
рефераты Производство и технологии
рефераты
рефераты Религия и мифология
рефераты
рефераты Сельское лесное хозяйство и землепользование
рефераты
рефераты Социальная работа
рефераты
рефераты Социология и обществознание
рефераты
рефераты Спорт и туризм
рефераты
рефераты Строительство и архитектура
рефераты
рефераты Таможенная система
рефераты
рефераты Транспорт
рефераты
рефераты Делопроизводство
рефераты
рефераты Деньги и кредит
рефераты
рефераты Инвестиции
рефераты
рефераты Иностранные языки
рефераты
рефераты Информатика
рефераты
рефераты Искусство и культура
рефераты
рефераты Исторические личности
рефераты
рефераты История
рефераты
рефераты Литература
рефераты
рефераты Литература зарубежная
рефераты
рефераты Литература русская
рефераты
рефераты Авиация и космонавтика
рефераты
рефераты Автомобильное хозяйство
рефераты
рефераты Автотранспорт
рефераты
рефераты Английский
рефераты
рефераты Антикризисный менеджмент
рефераты
рефераты Адвокатура
рефераты
рефераты Банковское дело и кредитование
рефераты
рефераты Банковское право
рефераты
рефераты Безопасность жизнедеятельности
рефераты
рефераты Биографии
рефераты
рефераты Маркетинг реклама и торговля
рефераты
рефераты Математика
рефераты
рефераты Медицина
рефераты
рефераты Международные отношения и мировая экономика
рефераты
рефераты Менеджмент и трудовые отношения
рефераты
рефераты Музыка
рефераты
рефераты Кибернетика
рефераты
рефераты Коммуникации и связь
рефераты
рефераты Косметология
рефераты
рефераты Криминалистика
рефераты
рефераты Криминология
рефераты
рефераты Криптология
рефераты
рефераты Кулинария
рефераты
рефераты Культурология
рефераты
рефераты Налоги
рефераты
рефераты Начертательная геометрия
рефераты
рефераты Оккультизм и уфология
рефераты
рефераты Педагогика
рефераты
рефераты Полиграфия
рефераты
рефераты Политология
рефераты
рефераты Право
рефераты
рефераты Предпринимательство
рефераты
рефераты Программирование и комп-ры
рефераты
рефераты Психология
рефераты
рефераты Радиоэлектроника
рефераты
РЕКЛАМА
рефераты
 
рефераты

рефераты
рефераты
Разработка конического редуктора

Разработка конического редуктора

Содержание

Введение

1. Специальная часть

1.1 Краткое описание редуктора

1.2 Выбор электродвигателя, кинематический и силовой расчет

1.3 Расчет зубчатой передачи

1.4 Проектный расчет ведущего вала

1.5 Проектный расчет ведомого вала

1.6 Конструктивные размеры колеса

1.7 Конструктивные размеры корпуса и крышки редуктора

1.8 Эскизная компоновка редуктора

1.9 Подбор шпонок и их проверочный расчёт

1.10 Проверочный расчет ведомого вала

1.11 Выбор и проверочный расчет подшипников ведомого вала

1.12 Выбор посадок

1.13 Смазка редуктора

1.14 Сборка редуктора

1.15 Краткие требования по охране труда и технике безопасности

Заключение

Введение

Настоящий курсовой проект выполнен на основе технического задания, которое включает кинематическую схему привода ковшового элеватора, а также необходимые технологические параметры:

тяговая сила цепи F = 2,5 кН,

скорость ленты х = 2 м/с;

диаметр барабана D = 310 мм.

Новизна проекта заключается в том, что это первая самостоятельная конструкторская робота, закрепляющая навыки, полученные по дисциплине: «Детали машин», а также черчению, материаловедению, метрологии.

Объектом исследования является конический редуктор. Глубина проработки заключается в том, что расчет и проектирование основных деталей и узлов доводится до графического воплощения.

Актуализация проекта состоит в том, что умение расчета и проектирования деталей и узлов общего машиностроения востребованы в курсовых проектах по специальности, дипломном проекте, на производстве.

Основные этапы работы над проектом:

1. Кинематический и силовой расчет привода.

2. Проектные расчеты конической зубчатой передачи, волов, колеса, корпуса и крышки редуктора

3. Эскизная компоновка редуктора.

4. Выбор стандартных деталей и узлов.

5. Проверочный расчет деталей и узлов.

6. Выполнение сборочного чертежа редуктора и рабочих чертежей ведомого вала и конического колеса.

Теоретическая часть работы заключается в составлении краткого описания редуктора, разработке процесса его сборки по сборочному чертежу и назначения требований по технике безопасности и охране труда.

1. Специальная часть

1.1 Краткое описание редуктора

В настоящей курсовой работе спроектирован конический одноступенчатый редуктор. Он состоит из конической зубчатой передачи, заключенной в герметичный корпус. Шестерня изготовлена заодно с валом. Валы установлены в подшипники:

ведущий - роликовые конические однорядные подшипники 7209 - установлены врастяжку;

ведомый - роликовые конические однорядные подшипники 7210 - установлены враспор.

Температурный зазор регулируется с помощью набора металлических прокладок.

Подшипники смазываем пластичным смазочным материалом - пресс-солидолом марки С ГОСТ 4366-76, закладываемым в подшипниковые камеры при монтаже.

Смазывание зубчатого зацепления производится окунанием зубчатого колеса в масло, заливаемое внутрь корпуса до погружения колесо на всю длину зуба.

Контроль за уровнем мосла производим с помощью жезлового маслоуказателя. Для слива отработанного масла предусмотрено отверстие в нижней части корпуса.

1.2 Выбор электродвигателя, кинематический и силовой расчет

1) Определяем общий КПД передачи.

Из таблицы 2.2 [1] выписываем

зкон = 0,95 - 0,97 зм = 0,98 зцеп = 0,90 - 0,93

КПД подшипников учтено в КПД передач, общий КПД равен

з = зкон · зм · зцеп = 0,97 · 0,98 · 0,92 = 0,874

2) Определяем требуемую мощность электродвигателя.

Определяем мощность рабочей машины:

Ррм = F · V = 2,5 · 2 = 5 кВт

Требуемая мощность элеватора:

Рэл.дв.тр = кВт

3) Из таблицы К9 [1] выбираем двигатель, т. к. быстроходные двигатели имеют низкий ресурс и тихоходные имеют большие габариты, выбираем средне скоростной двигатель, имеющий ближайшую большую мощность:

Эл. двигатель 4АМ132М6УЗ

Рдв. = 7,5 кВт здв = 870 об/мин

4) Определяем общее передаточное число передачи и передаточные числа ступеней, воспользуемся рекомендацией табл. 2.3 [1].

Uзуба = 2…7,1 Uцепи = 2…4

Определяем частоту вращения вала рабочей машины:

зр.м = об/мин

Uобщ =

Назначаем Uзуб = 3,15, тогда

Uцеп = передаточное число ступеней удовлетворяет рекомендациям [1].

5) Определяем угловые скорости валов

(р/с);

(р/с);

Uзуб = => (р/с);

Uцеп = => (р/с);

6) Определяем мощности по валам передач:

Рдв.тр = 5,72 (кВт);

Р2 = Рдв.тр · зм = 5,72 · 0,98 = 5,6 (кВт);

Р3 = Р2 · зкон = 5,6 · 0,96 = 5,43 (кВт);

Р4 = 5 (кВт);

7) Определяем моменты на валах передач:

М1 = (Н·м);

М2 = (Н·м);

М3 = (Н·м);

М4 = (Н·м);

1.3 Расчет зубчатой передачи

Из предыдущих расчетов вращающий момент на ведомом валу М3 = 187,9 (Н ·м);

Передаточное число редуктора

Uзуб = 3,15;

Угловая скорость ведомого вала

(р/с);

Нагрузка близка к постоянной, передача нереверсивная.

1. Так как нагрузка на ведомо валу достаточно велика, для получения компактного редуктора принимаем марку стали 35ХМ для шестерни и колеса, с одинаковой термообработкой улучшения с закалкой ТВЧ до твёрдости поверхностей зубьев 49…65 HRC, уТ = 750 МПа при предлагаемом диаметре заготовки шестерни D < 200 мм и ширине заготовки колеса S < 125 мм.

Принимаем примерно средне значение твердости зубьев 51HRC.

2. Допускаемое контактное напряжение по формуле (9.37 [6])

[ун] = (уио /[Sн]) КHL

Для материала зубьев шестерни и колеса принимаем закалку при нагреве ТВЧ по всему контуру зубьев унo = 17 HRC + 200 (см. табл. 9.3 [6])

[SH] = 1,2; KHL = 1 (см. § 9.11 [6])

[ун]= (МПа);

3. Допустимое напряжение изгиба по формуле (9.42)

[уF]= (уFO/[SF] KFC · KFL.

Для материала зубьев шестерни и колеса: см. по табл. 9.3 [6].

уFO = 650 МПа; [SF] = 175; KFC = 1 (см. § 9.1 [6])

[уF] = (650/1,57) ·1 ·1 = 370 (МПа);

4. Коэффициент ширины зубчатого венца по формуле (9.77)

Шd = 0,166

5. По табл. 9.5 [6] принимаем коэффициент неравномерности распределения нагрузки по ширине зубчатого венца КНВ = 1,4

Интерполирование

Шd КНВ

0,4 - 1,25

0,15

0,2 0,55 - Д 0,2

0,6 1,45

0,2 - 0,2 Д =

0,15 - Д КНВ = 1,25+0,15 = 1,4

6. Внешний делительный диаметр колеса по формуле

de2 = 165 мм

Принимаем стандартное значение

de2 = 180 мм и ширину зубчатого венца b = 26 мм (см. табл. 9.7 [6])

7. Расчетные коэффициенты

Vp = 0,85 при Шd = 0,68

КFB = 1,64 (см. табл. 9.5 [6])

Шd КFB

0,4 - 1,44

0,15

0,2 0,55 - Д 0,27

0,6 1,71,

0,2 - 0,27 Д =

0,15 - Д КНВ = 1,44 - 0,2025 = 1,64

8. Внешний окружной модуль по формуле (9.79 [6])

me ? мм

9. Число зубьев колеса и шестерни

z2 = de2 /me = 180/2,72 = 66,2

z1 = z2 /u = 66,2/3,15 = 21

Принимаем: z1 = 21; z2 = 66.

10. Фактическое передаточное число

Uф = z2| z1 = 66|21 = 3,14

Отклонение от заданного

ДU = %<4%

11. Углы делительных конусов по формуле (9.49 [6])

tgд2 = Uф = 3,14; д2 = 72°

д1 = 90 - д2 = 90 - 72° = 18°

12. Основные геометрические размеры (см. формулы 9.50 … (9.56) [6]):

de1 = me · z1 = 2,72 ·21 = 57,12 (мм);

Re = 0,5 me (мм);

R = Re - 0,5в = 94,2 - 0,5 ·26 = 81,2 (мм);

Пригодность размера ширины зубчатого венца

в = 28 < 0,285 Rе = 0,285 · 94,2 = 26,8 (мм);

Условие соблюдается

m = me R/Re = 2,72 ·81,2/94,2 = 2,34 (мм);

d1 = m z1 = 2,34 ·21 = 49,14 (мм);

d12= m z2 = 2,34 ·66 = 154,44 (мм);

dае1 = de1 +2me cos д1 = 57,12 + 2 ·2,72 · cos 18° = 62,3 (мм);

dае2 = de2 +2me cos д2= 180 + 2 ·2,72 · cos 72° = 181,7 (мм);

13. Средняя скорость колес и степень точности

х = (м/с)

по табл. 9.1 принимаем 8 степень точности передачи.

14. Силы в зацеплении по формулам (9.57)… (9.59); окружная на колесе и шестерне:

Ft = 2М3/d2 = 2 · 187,9 ·103/154,44 = 2433,3 (Н);

радиальная на шестерни и осевая на колесе:

Fr1 = Fa2 = Ft · tg б щ·cos д1 = 2433,3·tg20°·cos 18° = 832,2 (Н);

осевая на шестерни и радиальная на колесе:

Fа1 = Fr2 = Ft · tg б щ·sin д1 = 2433,3·tg20°·sin 18° = 262,8 (Н);

15. Коэффициент динамической нагрузки

Кнх = 1,1 (см. табл. 9.6 [6])

КНВ = 1,4

16. Расчетное контактное напряжение по формуле (9.74 [6])

ун = МПа

уН = 899 МПа = [уН] = 899 МПа

R

17. Эквивалентное число зубьев шестерни и колесо по формуле (9.46 [6])

zх1 = z1/cos у1 = 21 / cos 18° = 22,1 (Н);

zх2 = z2/cos у2 = 66 / cos 72° = 220 (Н);

Коэффициент формы зуба (см. § 9.10 [6])

YF1 = 3,977; YF2 = 3,6

Интерполируем:

zх1 YF2

22 - 3,98

0,1

2 22,1 - Д 0,06

24 3,92

2 - 0,06 Д =

0,1 - Д КНВ = 3,98 - 0,003 = 3,977

18. Принимаем коэффициенты

КFх = 1,2 (см. табл. 9.6 [6])

КFВ = 1,64 (см. пункт 7) - остается без изменения

19. Расчетное напряжение изгиба в основании зубьев шестерни по формуле (9.78 [6])

уF1 = YF1 (МПа);

уF1 = 316,8 МПа < [уF] = 370 МПа.

Расчетное напряжение изгиба в основании зубьев колеса

уF2 = YF1 YF2/ YF1 = 316,8 · 3,6/3,9 = 286,76 (МПа);

уF2 = 286,76 МПа < [уF] = 370 МПа.

Прочность зубьев на изгиб обеспечена.

1.4 Проектный расчет ведущего вала

Ведущий вал выполняем заодно с шестерней.

Из предыдущих расчетов известно:

М2 = 61,5 (Н ·м); Re = 94,2 (мм)

в = 26 мм; me = 2,72 (мм)

д1° = 18°

1. Т.к. вал выполняем заодно с шестерней, то его материал сталь 35ХМ, тогда допустимое напряжение на кручение можно принять [ф] = 20 МПа.

Диаметр выходного участка:

dв1 = (мм);

Принимаем dв1 = 30 мм.

В кинематической схеме предусмотрено соединение ведущего вала редуктора и электродвигателя, выписываем из таблицы К10 [1] диаметр вала выбранного двигателя dэ = 38 мм и проверяем соотношение.

dв1 = 0,8 · dэ = 0,8 · 38 = 30,4 (мм);

т. к. данное соотношение выполняется, принимаем dв1 = 30 мм

2. Диаметр по монтажу: dм1 = dв1 + 5 мм = 30 + 5 = 35 (мм)

3. Диаметр цапфы: d1 = dм1 + 5 мм = 35 + 5 = 40 (мм)

4. Начинаем построение вала с прорисовки шестерни.

4.1 Под углом у1 = 18° откладываем расстояние:

Re = 94,2 (мм);

4.2 Откладываем ширину зубчатого венца:

в = 26 (мм);

4.3 Откладываем высоту головки зуба:

ha = me = 2,72 (мм) и высоту ножки зуба

hf = 1,28 me = 1,28 · 2,72 = 3,48 (мм);

4.4 Соединяем полученные точки с вершиной делительного конуса.

4.5 Строим буртик (dд) для упора подшипника:

dд1 = dn1 +10 = 40 + 10 = 50 (мм);

4.6 Определяем диаметр резьбы для гайки, крепящей подшипник:

dр1 = dм1 + 5 мм = 35 + 5 = 40 (мм);

Принимаем стандартное значение резьбы для гайки М36.

Рис. 1. Эскиз ведущего вала

1.5 Проектный расчет ведомого вала

Из предыдущих расчетов известно

М3 = 187,9 (Н · м) - вращающий момент на ведомом валу редуктора.

1. Диаметр выходного участка определяем из условия прочности на кручение:

dв1 = (мм)

Принимаем dв2 = 40 мм.

2. Диаметр на манжету:

dм2 = dв2 + 5 = 40 + 5 = 45 (мм);

3. Диаметр цапфы:

dn2 = dм2 + 5 = 45 + 5 = 50 (мм);

4. Диаметр посадочной поверхности:

dк2 = dn2 + 5 = 50 + 5 = 55 (мм);

5. Диаметр буртика:

d д2 = dк2 + 10 = 55 + 10 = 65 (мм);

Рис. 2. Эскиз ведомого вала

1.6 Конструктивные размеры колеса

Из предыдущих расчетов известно:

в = 26 мм; Re = 94,2 мм; dк = 55 мм; m = 2,34 мм;

dае2 = 181,7 мм; dе2 = 180 мм; d2 = 154,44 мм;

1. Находим диаметр ступицы стальных колес:

dст = 1,45 dв2 = 1,45 · 55 = 80 (мм);

2. Длина ступицы:

Lст = 1,1 · dк = 1,1 · 55 = 60 (мм);

3. Толщина обода конических колес:

до = 4 ·m = 4 · 2,34 = 9,36 (мм);

Принимаем до =10 (мм);

4. Толщина диска:

с = 0,1 Re = 0,1 · 94,2 = 9,42 (мм);

Принимаем с = 10 (мм);

5. Фаска:

n = 0,5 mn = 0,5 · 2,34 = 1,17 (мм);

Принимаем n = 1,6 (мм);

Рис. 3. Эскиз конического зубчатого колеса

1.7 Конструктивные размеры корпуса и крышки редуктора

Из предыдущих расчетов известно:

Re = 94,2 (мм) - внешнее конусное расстояние.

1. Толщина стенки конуса и крышки редуктора:

д = 0,05 Re + 1 = 0,05 · 94,2 + 1 = 5,71 (мм); д = 8 (мм);

д = 0,04 Re + 1 = 0,04 · 94,2 + 1 = 4,77 (мм); д1 = 8 (мм);

2. Толщина верхнего пояса (фланца) корпуса:

в = 1,5 д = 1,5 · 8 = 12 (мм);

3. Толщина нижнего пояса (фланца) крышки корпуса:

в1 = 1,5 д1 = 1,5 · 8 = 12 (мм);

4. Толщина нижнего пояса корпуса без бобышки:

р = 2,35 д = 2,35 · 8 = 18,8 (мм) ?20 (мм);

5. Толщина ребер основания корпуса:

m = (0,85ч1) д = 1 · 8 = 8 (мм);

6. Толщина ребер крышки:

m1 = (0,85ч1) д1 = 1 · 8 = 8 (мм);

7. Диаметр фундаментных болтов:

d1 = 0,072 Re +12 = 0,072 · 94,2 + 12 = 18,78 (мм);

Принимаем диаметр болтов М20.

8. Диаметр болтов:

8.1 У подшипников

d2 = (0,7ч0,75) d1 = 0,75 · 20 = 15 (мм);

Принимаем диаметр болтов М16.

8.2 Соединяющие основание корпуса с крышкой

d3 = (0,5ч0,6) d1 = 0,6 · 20 = 12 (мм);

Принимаем диаметр болтов М12.

9. Размеры, определяющие положение болтов d2:

е ? (1ч1,2) d2 = 1 · 15 = 15 (мм);

q = 0,5 d2 + d4 = 0,5 · 15 + 6 = 13,5 (мм);

Крепление крышки подшипника:

d4 = 6 (мм) (по таблице 10.3 [2]);

Рис. 4. Эскиз корпуса и крышки редуктора

1.8 Эскизная компоновка редуктора

Эскизная компоновка редуктора служит для приближенного определения положения зубчатых колес относительно опор для последовательного определения опорных реакций и проверочного расчета вала, а также проверочного расчета подшипников.

С учетом типа редуктора предварительно назначаем роликовые конические однорядные подшипники. По диаметру цапфы (dn2 = 50 мм). Выбираем по каталогу подшипники ведомого вала 7210.

Назначаем способ смазки: зацепление зубчатой пары - окунанием зубчатого венца в масло, подшипники смазываются автономно, пластичным смазочным материалом, камеры подшипников отделяем от внутренней полости корпуса мазеудерживающими кольцами.

Определяем размеры, необходимые для построения и определения положения реакций опор:

а =

аб = (мм);

аr = (мм);

f1 = 35 (мм) - определяем конструктивно

l1 = 2 · f1 = 2 · 35 = 70 (мм);

Принимаем l1 = 70 мм = 0,07 (м);

Расстояние между опорами ведомого вала:

l2 = 0,19 (м).

1.9 Подбор шпонок и их проверочный расчёт

Шпоночные соединения в редукторе предусмотрены для передачи вращающего момента от полумуфты на ведущий вал, от колеса на ведомый вал и от ведомого вала на звездочку.

Все соединения осуществляем шпонками с исполнением 1.

Из предыдущих расчетов известно:

М2 = 61,5 (Н ·м);

М3 = 187,9 (Н ·м);

dв1 = 30 (мм)

dв2 = 40 (мм)

Принимаем [у]см = 110 МПа.

1. Соединение полумуфта - ведущий вал:

усм =

Здесь h = 7 мм; в = 8 мм; t1 = 4 мм.

(табл. К 42 [1])

1.1 Вычисляем длину ступицы:

lст = 1,5 dв1 = 1,5 · 30 = 45 (мм).

1.2 Вычисляем длину шпонки:

lш = lст - 5 мм = 45 - 5 = 40 (мм).

1.3 Принимаем стандартное значение:

lш = 40 мм.

1.4 Вычисляем рабочую длину шпонки:

lр = lш - в = 40 - 8 = 32 (мм).

1.5 Вычисляем расчетное напряжение сжатия и сравниваем его с допускаемым:

усм = МПа

усм = 49,7 МПа < [у]см = 110 МПа

Прочность соединения обеспечена.

2. Соединение звездочки с ведомым валом:

усм =

Здесь h = 8 мм; в = 12 мм; t1 = 5 мм. (табл. К 42 [1])

2.1 Вычисляем длину ступицы:

lст = 1,5 dв2 = 1,5 · 40 = 60 (мм).

2.2 Вычисляем длину шпонки:

lш = lст - 5 мм = 60 - 5 = 55 (мм).

2.3 Принимаем стандартное значение:

lш = 56 мм.

2.4 Вычисляем рабочую длину шпонки:

lр = lш - в = 56 - 12 = 44 (мм).

2.5 Вычисляем расчетное напряжение сжатия и сравниваем его с допускаемым:

усм = МПа

усм = 84,7 МПа < [у]см = 110 МПа.

1.10 Проверочный расчет ведомого вала

Из предыдущих расчетов известно:

М3 = 187,9 (Н ·м) - момент на ведомом валу

Ft = 2433,3 (Н) - окружная сила

Fa = 832,2 (Н) - осевая сила

Fr = 262,8 (Н) - радиальная сила

d2 = 154,44 (мм) - диаметр делительной окружности.

На эскизной компоновке редуктора замеряем размеры

l1 = 0,07 м; l2 = 0,12 м.

Вычисляем консольную длину участка:

lк = 0,7 · dв2 + (50 мм) = 0,7 ·40 + 50 = 0,078 м

Принимаем lк = 0,7 м.

Вычисляем консольную силу для зубчатого редуктора:

Fк = 125 (Н)

Материал Сталь 45 из табл. 3.2 [1], ТО - улучшение с закалкой ТВЧ 45 HRC.

уb = 780 МПа; у-1 = 335 МПа; ф0 = 370 МПа.

Способ обработки рабочих поверхностей - чистовая обточка, цапфы шлифуются.

Чертеж ведомого вала

1. Консольная сила прикладывается параллельно окружной и имеет противоположное ей направление.

Определяем осевой изгибающий момент:

Ма = Fa (Н ·м)

2. Определяем реакции опор в вертикальной плоскости:

УМ(А) i = 0 1) - УВ ·0,19 + Fr · 0,07 - Ma = 0

УМ(B) i = 0 2) УA ·0,19 - Fr · 0,12 - Ma = 0

=> 1) УВ = (Н);

=> 2) УА = (Н);

Проверка:

УFyi = 0

УА + УВ - Fr = 0

503,8 - 262,8 - 241 = 0

0 = 0

Реакции найдены верно.

3. Строим эпюру изгибающих моментов Мх:

;

(Н·м);

(Н·м);

;

4. Определяем реакции опор в горизонтальной плоскости

УМ(А) i = 0 1) Fк ·0,07 + Ft · 0,07 - XB · 0,19 = 0

УМ(B) i = 0 2) Fk ·0,26 + XA · 0,19 - Ft · 0,12 = 0

=> 1) XВ = (Н);

=> 2) XА = (Н);

Проверка:

УFxi = 0

Fk + XA - Ft + XB = 0

1713,5 - 808 - 2433,3+ 1527,8 = 0

0 = 0

Реакции найдены верно.

5. Строим эпюру изгибающих моментов Му:

;

(Н·м);

(Н·м);

;

6. Строим эпюру суммарных изгибающих моментов:

Мис = 0;

МиА = (Н·м);

МиД = (Н·м);

Ми'Д = (Н·м);

МиВ = 0;

7. Строим эпюру крутящих моментов:

Мz = M3 = 187,9 (Н·м);

8. Опасным является сечение Д, т. к. МиД = Мmax,концентратор напряжений - шпоночный паз.

dк2 = 55 (мм); в = 16 (мм); t2 = 4,3 (мм) (табл. К 42 [1]);

Рис. 5. Эскиз шпоночного паза

9. Определяем геометрические характеристики сечения:

Wx = 0,1 dк23 - (мм3)

Wр = 0,2 dк23 - (мм3)

10. Определяем максимальное напряжение в опасном сечении:

уmax = (МПа);

фmax = (МПа).

11. Полагаем, что нормальные напряжения изменяются по симметричному циклу, а касательные по отнулевому циклу;

уа = уmax =12,4 (МПа);

фа = (МПа).

12. Из табл. 2.1-2.5 [3] выбираем коэффициенты влияния на предел выносливости.

Коэффициенты влияния абсолютных размеров поперечного сечения Кd:

dк2 Кdу

50 - 0,81

5

20 55 - Д 0,05

70 0,76

20 - 0,05 Д =

5 - Д Кdу = 0,81 - 0,0125 = 0,797

dк2 Кdф

50 - 0,7

5

20 55 - Д 0,03

70 0,67

20 - 0,03 Д =

5 - Д Кdф = 0,7 - 0,0075 = 0,693

Эффективный коэффициент концентрации напряжений Кд(Кф):

Кд = 2,5; Кф = 2,3.

Коэффициенты влияния качества обработки КF:

КF = 0,83.

Коэффициент влияния поверхности упрочнения Кх:

Кх = 2.

13. Вычисляем коэффициенты снижения предела выносливости:

(Кд)Д =

(Кф)Д =

14. Определяем пределы выносливости в данном сечении:

(д-1) Д = (МПа);

(ф0) Д = (МПа);

15. Определяем запас усталостной прочности по нормальным и касательным напряжениям

Sу =

Sф =

16. Определяем общий запас усталостной прочности и сравниваем его с допускаемым:

Принимаем [S] = 2

S = S =

S = 16,9 > [S] = 2.

Запас усталостной прочности обеспечен.

1.11 Выбор и проверочный расчет подшипников ведомого вала

Тип подшипника назначается в зависимости от условий работы подшипникового узла, в частности, о наличия осевой силы. Подшипник выбирается по соответствующей таблице в зависимости от диаметра цапфы.

Расчет заключается в определении расчетной динамической грузоподъемности и сравнении ее с грузоподъемностью подшипника, взятой из таблицы Сr расч ? Сr - условия работоспособности подшипника.

Из предыдущих расчетов известно:

dn2 = 50 мм - диаметр цапфы

Fa = 832,2 (Н) - осевая сила

t = 80 °C в подшипниковом узле

щ3 = 28,9 (р/с) - угловая скорость вала

LH - 12000 (час) - ресурс подшипника

Характер нагрузки - умеренные толчки.

УА = 503,8 (Н) - реакция опоры в вертикальной плоскости

УВ = - 241 (Н) - реакция опоры в вертикальной плоскости

ХА = -808 (Н) - реакция опоры в горизонтальной плоскости

ХВ = 1527,8 (Н) - реакция опоры в горизонтальной плоскости

Выбираем подшипник 7210 по табл. К 29 [1] (начиная с легкой серии)

1. Определяем суммарные реакции опор:

RA = (Н);

RВ = (Н);

2. Выписываем из таблицы К 29 [1] характеристику подшипника.

Сr = 52,9 (кН); Сor = 40,6 (кН); e = 0,37; у = 1,6.

3. В соответствии с условиями работы принимаем расчетные коэффициенты.

V = 1 - коэффициент вращения, т. к. вращается внутреннее кольцо подшипника.

Кб = 1,3 - коэффициент безопасности, учитывающий влияние характеристики нагрузки на долговечность подшипника.

КТ = 1 - коэффициент, учитывающий влияние температуры на долговечность подшипника.

3.1 Определим осевые составляющие от радиальных сил

RS1 = 0,83 e RA = 0,83 · 0,37 · 952,2 = 294,4 (Н);

RS2 = 0,83 e RВ = 0,83 · 0,37 · 1546,7 = 475 (Н);

3.2 Определяем расчетные осевые силы.

RS1 = 294,4 (Н) < RS2 = 475 (Н)

FA = 832,2 (Н) > RS2 - RS1 = 475 - 294,4 = 180,6 (H);

RА1 = RS1 = 294,4 (Н);

RA2 = RA1 + FA = 294,4 + 832,2 = 1126,6 (Н).

3.3 Определяем соотношение RA/V·R

< e = 0,37, то х = 1; у = 0

> e = 0,37, то х = 0,4; у = 1,6.

4. Определяем эквивалентную динамическую нагрузку:

RE1 = (XVRA + УRa1) KTKб = (1·1·952,2+0·294,4) ·1·1,3 = 1237,9 (Н);

RE2 = (XVRВ + УRa2) KTKб = (0,4·1·1546,7+1,6·1126,6) ·1·1,3 = 3147,6 (Н);

Дальнейший расчет ведем по наиболее нагруженной опоре.

5. Определяем расчетную динамическую грузоподъемность:

Сr расч = Re2 (кН)

Р = 3,33 - для роликовых подшипников

Сr расч = 3147,6 (кН).

6. Сравниваем расчетную динамическую грузоподъемность Сr расч и базовую динамическую грузоподъемность Сr:

Сr расч = 15,42 (кН) < Сr = 52,9 (кН).

Подшипник 7210 удовлетворяет заданному режиму работы.

1.12 Выбор посадок

Посадки назначаем в соответствии с указаниями, данными в табл. 10.13 [2].

Посадка зубчатого конического колеса на вал по ГОСТ 25347-82.

Посадка звездочки цепной передачи на вал редуктора .

Шейки валов под подшипники выполняем с отклонением вала К6. Отклонения отверстий в корпусе под наружное кольцо по H7. Посадка распорных колец, сальников на вал .

Посадка стаканов под подшипники качения в корпусе, распорные втулки на вал .

1.13 Смазка редуктора

Смазывание зубчатого зацепления производится окунанием зубчатого колеса в масло, заливаемое внутрь корпуса до погружения колеса на всю длину зуба.

По табл. 10.8 [2] устанавливаем вязкость масла. При контактных напряжениях ун = 899 МПа и средней скорости V = 2 м/с вязкость масла должна быть приблизительно равна 60· 10-6 м2/с. По табл. 10.10 [2] принимаем масло индустриальное И_70А (по ГОСТ 20799-75). Подшипники смазывают пластичным материалом, закладываем в подшипниковые камеры, при монтаже. Сорт смазки выбираем по табл. 9.14 [2] - пресс-солидол марки С (по ГОСТ 43-66-76).

1.15 Краткие требования по охране труда и технике безопасности

Требования по технике безопасности:

а) Все вращающиеся детали должны быть закрыты защитными кожухами;

б) Корпус редуктора не должен иметь острых углов, кромок и должен быть оборудован монтажным устройством;

в) На ограждение необходимо поставить блокировку и предупредительный знак.

Требования по экологии:

а) Отработанное масло сливать в предназначенные для этого емкости;

б) Вышедшие из строя детали складировать в специальных помещениях.

Заключение

В курсовом проекте продумана конструкция конического редуктора, выполнены расчеты цепной передачи, валов, колеса, корпуса и крышки редуктора. По каталогам выбраны размеры шпоночных соединений ГОСТ 23360-78 для диаметров 30 и 40 и выбраны подшипники роликовые конические однорядные 7209 и 7210 ГОСТ 27365-87. Для деталей и узлов проведены необходимые проверочные расчеты.

Графическая часть (сборочный чертеж конического редуктора, чертеж колеса конического, чертеж ведомого вала) выполнена согласно требованиям ЕСКД. Продуманы требования по технике безопасности и охране труда; по сборочному чертежу описан процесс сборки редуктора.

     



рефераты
рефераты
© 2011 Все права защищены