2. Промежуточное исследование исходных данных.
В промежуточном исследовании мы поставим в соответствие буквам строки из 16-ти символов наборы признаков, сформулируем отображение T:H ´ A à F и выделим 3 ФАЛ. Построим для них таблицу истинности и по картам Карно найдем их номера. 2.1. Отображение символов строки А на индикаторе.
С помощью матричного индикатора (см. п.1.2) поставим в соответствие буквам строки из пункта 1.1 наборы признаков (см. рис. 2.1).
Рис. 2.1, отображение символов строки А на индикаторе. Выпишем отдельно буквы и соответствующие им признаки И 1,5,6,10,11,14,15,16,18,20,21,22,25,26,30,31,35 В 1,2,3,4,6,10,11,15,16,17,18,19,21,25,26,30,31,32,33,34 A 2,3,4,6,10,11,15,16,17,18,19,20,21,25,26,30,31,35 H 1,5,6,10,11,15,16,17,18,19,20,21,25,26,30,31,35 пробел М 1,5,6,7,9,10,11,13,15,16,20,21,25,26,30,31,35 И 1,5,6,10,11,14,15,16,18,20,21,22,25,26,30,31,35 Х 1,5,7,9,12,14,18,22,24,27,29,31,35 A 2,3,4,6,10,11,15,16,17,18,19,20,21,25,26,30,31,35 Й 1,3,5,6,10,11,14,15,16,18,20,21,22,25,26,30,31,35 Л 3,4,5,7,10,11,15,16,20,21,25,26,30,31,35 O 2,3,4,6,10,11,15,16,20,21,25,26,30,32,33,34 В 1,2,3,4,6,10,11,15,16,17,18,19,21,25,26,30,31,32,33,34 И 1,5,6,10,11,14,15,16,18,20,21,22,25,26,30,31,35 Ч 1,5,6,10,11,15,16,17,18,19,20,25,30,35 . 35 2.2. Получение ФАЛ
В данном курсовом проекте из множества признаков выделено 3 (см. табл.1). С номерами 1,3,5 для которых и будет построена логическая схема устройства, диагностирующего их наличие или отсутствие. Для решения задачи в двухзначной логике необходимо перейти к двоичному коду, закодировав им каждый из 16-ти символов строки А. При этом достаточно четырехразрядного двоичного числа, определяющего значение XYZP, которым в дальнейшем будет кодироваться номер каждого символа. Например, второй символ «В» должен иметь код 0001, первый «И» - 0000 и т.д. Таблица истинности для выбранных признаков представлена в таблице 2, где ФАЛ - функция алгебры логики, в которых значение 1 принимается для кодов, имеющих значение признака h, равного 1. В общем случае h Ì {0,1}. Следует учесть, что h1àF1, h3àF3, h5àF5. Отображение T:H ´ A à F
Табл. 1
2.3. Нахождение номеров ФАЛ по карте Карно
Следующим этапом является нахождение 10-значных номеров ФАЛ по карте Карно, общий вид которой для 4-ех переменных представлен на рисунке 2.2. Цифры в квадратах являются степенью числа 2 при определении номера ФАЛ, выбранных в данной работе на рисунке 2.2а,б,в
Рис. 2.2 Карта Карно со степенями двойки 2.4. Таблица истинности.
Табл. истинности для ФАЛ. Табл. 2 Нахождение номера ФАЛ: F1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
N(F1) = 20 + 21 + 23 + 25+ 27 + 26 + 29 + 212 + + 213 + 214 = 29419 |
Нахождение номера ФАЛ: F3
N(F3) = 21 + 22 + 212 + 28+ 29 + 210 + 211 = 7942
Нахождение номера ФАЛ: F5
N(F5) = 20 + 23 + 25 + 26 + 27 + 29+ 210 + 213 + + 214 = 26345
Представим выбранные признаки в совершенной дизъюнктивной нормальной форме (СДНФ) и совершенной конъюнктивной нормальной форме (СКНФ). Для этого из таблицы истинности ФАЛ (см. табл. 2) выпишем конституэнты 0 и 1.
ФАЛ в СДНФ примет вид:
F1(X,Y,Z,P) = (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú
(X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P)
F3(X,Y,Z,P) = (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú
(X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P)
F5(X,Y,Z,P) = (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú
(X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P) Ú (X,Y,Z,P)
ФАЛ в СКНФ примет вид:
F1(X,Y,Z,P) = (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P)
F3(X,Y,Z,P) = (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P)
F5(X,Y,Z,P) = (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P) & (X Ú Y Ú Z Ú P)
Проведем минимизацию полученных ФАЛ при помощи карты Карно и представим их в ДНФ. Для этого попытаемся оптимальным образом объединить 0-кубы в кубы большей размерности. Клетки, образующие k-куб, дают минитерм n-k ранга, где n - число переменных, которые сохраняют одинаковое значение на этом k-кубе. Таким образом, получим ДНФ выбранных ФАЛ.
Рис 2.2а Рис 2.2б Рис 2.2в
Проведем минимизацию алгебраическим путем, воспользовавшись тождеством а È а = а.
1. XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP = XYZ Ú XZP Ú XZP Ú YZP Ú XYZ Ú XZP = ZP Ú XYZ Ú XZP Ú YZP Ú XYZ
2. XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZPÚ XYZP Ú XYZP Ú XYZP Ú XYZP = YZP Ú YZP Ú XZP Ú XYZ Ú XYZ = XY Ú YZP Ú YZP Ú XZP
3. Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZPÚ XYZP Ú XYZP Ú XYZP Ú XYZP Ú XYZP = XZP Ú XYP Ú XYZ Ú XZP Ú XZP Ú XYZP
Построить матрицу отношений T:H ´ A. Матрица отношений представляет собой таблицу, строками которой являются записи (кортежи признаков), а строками отношения, которые имеют все уникальные имена. Матрица отношения представлена в таблице 3.
Матрица отношений. Табл. 3
Определим классы толерантности. Рассмотрим классы толерантности k1, k2, k3, имеющие общие элементы, следовательно, являющиеся пересекающимися множествами.
h1 = h(a1) = h(A) = { X0, X1, X3, X5, X6, X7, X9, X12, X13, X14 }
h2 = h(a2) = h(B) = { X1, X2, X8, X9, X10, X11, X12 }
h3 = h(a3) = h(C) = { X0, X3, X5, X6, X7, X9, X10, X13, X14 }
Проанализировав классы h1, h2, h3, можно получить: k1 Ç k2 = 0;
k1 Ç k3 = 0; k2 Ç k3 = 0, т.е. {k1, k2, k3 } - образуют класс толерантности
Результаты исследования занесем в таблицу 3.
Определим классы эквивалентности для этого множества А = {Х0, Х1, ...., Х15 } разобьем на классы эквивалентности, получим 6 классов
М1 = {AC} = {X0,X3,X5,X6 X7,X13,X14}
М2 = {AB} = {X1,X12}
М3 = {B} = {X2,X8,X11}
М4 = { } = {X4,X15}
М5 = {ABC} = {X9}
М6 = {BC} = {X10}
При этом каждый класс полностью определяется любым его представителем. Сопоставив результаты исследования с результатами пункта 3.2 получим следующие зависимости
М1 Ì K1
М2 Ì K1
М3 Ì K2
М5 Ì K1
М6 Ì K2
М1 Ì K3
М2 Ì K2
М5 Ì K2
М6 Ì K3
М5 Ì K3
или
K1 = M1 È M2 È M5
K2 = M2 È M3 È M5 È M6
K3 = M1 È M5 È M6
Результаты исследования занесены в таблицу 3. Результаты исследования на эквивалентность и толерантность необходимы для оптимизации построения логической схемы.
Матрицу эквивалентности и толерантности можно представить в виде квадрата, по диагонали которого строятся классы эквивалентности, а затем устраиваются отношения толерантности. Матрица эквивалентности и толерантности представлена в таблице 4.
Матрица эквивалентности и толерантности. Таблица 4.
Диаграмма Эйлера дает наглядное представление о том, как распределяются признаки по классам толерантности и эквивалентности. Диаграмма Эйлера для выбранных ФАЛ представлена на рисунке 3.5.
Диаграмма Эйлера. Рис. 3.5
Комбинационная схема автомата распознавания набора признаков H = {h1, h3, h5 } построена на основе результатов исследований в пункте 3.1 и пункте 3.4.
Таблица 5
Используя таблицу 5, можно записать следующие отношения:
G1 = (XYZP) Ú (XYZP) Ú (XYZP) Ú (XYZP) Ú (XYZP) Ú (XYZP) Ú (XYZP) = (XYZP) Ú (XYZP) Ú (XYZP) Ú (XYZ) Ú (YZP)
G2 = (XYZP) Ú (XYZP)
G3 = (XYZP) Ú (XYZP) Ú (XYZP)
G4 = (XYZP) Ú (XYZP)
G5 = (XYZP)
G6 = (XYZP)
Тогда ФАЛ можно представить в виде:
F1 = G1 Ú G2 Ú G5
F3 = G2 Ú G3 Ú G5 Ú G6
F5 = G1 Ú G5 Ú G6
Эти отношения эквивалентны ФАЛ в СДНФ, полученным в пункте 2.5.
Комбинационная схема строилась в два этапа:
1 этап: - построение комбинационной схемы на элементах и, или,
(нестандартных).
2 этап: - замена нестандартных элементов на стандартные и-не
Окончательный вариант комбинационной схемы приведен в приложении 1.
1. В.П. Сигорский. «Математический аппарат инженера» - издательство Киев: Техника - 1975 г.
Проведя анализ на толерантность и эквивалентность, мы построили автомат, распознающий кортеж признаков H = {h1, h3, h5 }, который состоит из 16 - ти логических элементов.
© 2011 Все права защищены |