Предельно допустимые электрические режимы эксплуатации | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Напряжение источника питания, В |
5 - 10 В |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Нагрузочная способность на логическую микросхему, не более |
50 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Выходной ток Iвых0 и Iвых1, мА, не более |
0.5 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Помехоустойчивость, В |
0.9 |
РАСЧЕТ ТЕПЛОВОГО РЕЖИМА БЛОКА
Исходные данные:
Размеры блока:
L1=250 мм L2=180 мм L3=90 мм
Размеры нагретой зоны:
a1=234 мм a2=170 мм a3=80 мм
Зазоры между нагретой зоной и корпусом
hн=hв=5 мм
Площадь перфорационных отверстий
Sп=0 мм2
Мощность одной ИС
Pис=0,001 Вт
Температура окружающей среды
tо=30 оC
Тип корпуса
Дюраль
Давление воздуха
p = 1.33 × 104 Па
Материал ПП
Стеклотекстолит
Толщина ПП
hпп = 2 мм
Размеры ИС
с1 = 19.5 мм с2 = 6 мм c3 = 4 мм
Этап 1. Определение температуры корпуса
1. Рассчитываем удельную поверхностную мощность корпуса блока qк:
где P0 - мощность рассеиваемая блоком в виде теплоты;
Sк - площадь внешней поверхности блока.
Для осуществления реального расчета примем P0=20 Вт, тогда
2. По графику из [1] задаемся перегревом корпуса в первом приближении Dtк= 10 оС.
3. Определяем коэффициент лучеиспускания для верхней aл.в, боковой aл.б и нижней aл.н поверхностей корпуса:
Так как e для всех поверхностей одинакова и равна e=0.39 то:
4. Для определяющей температуры tm = t0 + 0.5 Dtk = 30 + 0.5 10 =35 oC рассчитываем число Грасгофа Gr для каждой поверхности корпуса
где Lопр i - определяющий размер i-ой поверхности корпуса;
g - ускорение свободного падения;
gm - кинетическая вязкость газа, для воздуха определяется из таблицы 4.10 [1] и равна gm=16.48 × 10-6 м2/с
5. Определяем число Прандталя Pr из таблицы 4.10 [1] для определяющей температуры tm, Pr = 0.7.
6. Находим режим движения газа, обтекающих каждую поверхность корпуса:
5 × 106 < Grн Pr = Grв Pr = 1.831 ×0.7 × 107 = 1.282 × 107 < 2 × 107 следовательно режим ламинарный
Grб Pr = 6.832 ×0.7 × 106 = 4.782 × 106 < 5 × 106 следовательно режим переходный к ламинарному.
7. Рассчитываем коэффициент теплообмена конвекцией для каждой поверхности блока ak.i:
где lm - теплопроводность газа, для воздуха lm определяем из таблицы 4.10 [1] lm = 0.0272 Вт/(м К);
Ni - коэффициент учитывающий ориентацию поверхности корпуса: Ni = 0.7 для нижней поверхности, Ni = 1 для боковой поверхности, Ni = 1.3 для верхней поверхности.
8. Определяем тепловую проводимость между поверхностью корпуса и окружающей средой sк:
9. Рассчитываем перегрев корпуса блока РЭА во втором приближении Dtк.о:
где Кк.п - коэффициент зависящий от коэффициента корпуса блока. Так как блок является герметичным, следовательно Кк.п = 1;
Кн1 - коэффициент, учитывающий атмосферное давление окружающей среды берется из графика рис. 4.12 [1], Кн1 = 1.
10. Определяем ошибку расчета
Так как d=0.332 > [d]=0.1 проводим повторный расчет скорректировав Dtк= 15 оС.
11. После повторного расчета получаем Dtк,о= 15,8 оС, и следовательно ошибка расчета будет равна
Такая ошибка нас вполне устраивает d=0.053 < [d]=0.1
12. Рассчитываем температуру корпуса блока
Этап 2. Определение среднеповерхностной температуры нагретой зоны
1. Вычисляем условную удельную поверхностную мощность нагретой зоны блока qз:
где Pз - мощность рассеиваемая в нагретой зоне, Pз = 20 Вт.
2. По графику из [1] находим в первом приближении перегрев нагретой зоны Dtз= 18 оС.
3. Определяем коэффициент теплообмена излучением между нижними aз.л.н, верхними aз.л.в и боковыми aз.л.б поверхностями нагретой зоны и корпуса.
Для начала определим приведенную степень черноты i-ой поверхности нагретой зоны eпi :
где eзi и Sзi - степень черноты и площадь поверхности нагретой зоны, eзi = 0.92 (для всех поверхностей так как материал ПП одинаковай).
Так как приведенная степень черноты для разных поверхностей почти одинаковая, то мы можем принять ее равной eп = 0.405 и тогда
4. Для определяющей температуры tm = 0.5 (tк + t0 + Dtk) = 0.5 (45 + 30 + 17 =46 oC и определяющего размере hi рассчитываем число Грасгофа Gr для каждой поверхности корпуса
где Lопр i - определяющий размер i-ой поверхности корпуса;
g - ускорение свободного падения;
gm - кинетическая вязкость газа, для воздуха определяется из таблицы 4.10 [1] и равна gm=17.48 × 10-6 м2/с
Определяем число Прандталя Pr из таблицы 4.10 [1] для определяющей температуры tm, Pr = 0.698.
Grн Pr = Grв Pr = 213.654 × 0.698 = 149.13
Grб Pr = 875.128 × 0.698 = 610.839
5. Рассчитаем коэффициент коэффициенты конвективного теплообмена между нагретой зоной и корпусом для каждой поверхности:
· для нижней и верхней
· для боковой поверхности
где lm - теплопроводность газа, для воздуха lm определяем из таблицы 4.10 [1] lm = 0.0281 Вт/(м К);
6. Определяем тепловую проводимость между нагретой зоной и корпусом:
где s - удельная тепловая проводимость от модулей к корпусу блока, при отсутствии прижима s = 240 Вт/(м2 К);
Sl - площадь контакта рамки модуля с корпусом блока;
Кs - коэффициент учитывающий кондуктивный теплообмен
В результате получаем:
7. Рассчитываем нагрев нагретой зоны Dtз.о во втором приближении
где Кw - коэффициент, учитывающий внутреннее перемешивание воздуха, зависит от производительности вентилятора, Кw = 1;
Кн2 - коэффициент, учитывающий давление воздуха внутри блока, Кн2 = 1.3.
8. Определяем ошибку расчета
Такая ошибка нас вполне устраивает d=0.053 < [d]=0.1.
9. Рассчитываем температуру нагретой зоны
Этап 3. Расчет температуры поверхности элемента
1. Определяем эквивалентный коэффициент теплопроводности модуля, в котором расположена микросхема. Для нашего случая, когда отсутствуют теплопроводные шины lэкв = lп = 0.3 Вт/(м К) , где lп - теплопроводность материала основания печатной платы.
2. Определяем эквивалентный радиус корпуса микросхем:
где S0ИС - площадь основания микросхемы, S0ИС = 0.0195 × 0.006 = 0.000117 м2
3. Рассчитываем коэффициент распространения теплового потока
где a1 и a2 - коэффициенты обмена с 1-й и 2-й стороной ПП; для естественного теплообмена a1 + a2 = 18 Вт/(м2 К);
hпп - толщина ПП.
4. Определяем искомый перегрев поверхности корпуса микросхемы для ИМС номер 13 находящейся в середине ПП и поэтому работающей в наихудшем тепловом режиме:
где В и М - условные величины, введенные для упрощения формы записи, при одностороннем расположении корпусов микросхем на ПП В = 8.5 p R2 Вт/К, М = 2;
к - эмпирический коэффициент: для корпусов микросхем, центр которых отстоит от концов ПП на расстоянии менее 3R, к = 1.14; для корпусов микросхем, центр которых отстоит от концов ПП на расстоянии более 3R, к = 1;
кa - коэффициент теплоотдачи от корпусов микросхем определяется по графика (рис. 4.17) [1] и для нашего случая кa = 12 Вт/(м2 К);
Ni - число i-х корпусов микросхем, расположенный вокруг корпуса рассчитываемой микросхемы на расстоянии не более ri < 10/m = 0.06 м, для нашей ПП Ni = 24;
К1 и К0 - модифицированные функции Бесселя, результат расчета которых представлен ниже:
Dtв - среднеобъемный перегрев воздуха в блоке:
QИСi - мощность, рассеиваемая i-й микросхемой, в нашем случае для всех одинаковая и равна 0.001 Вт;
SИСi - суммарная площадь поверхностей i-й микросхемs, в нашем случае для всех одинаковая и равна SИСi = 2 (с1 × с2 + с1 × с3 + с2 × с3) = 2 (19.5 × 6 + 19.5 × 4 + 6 × 4) = 438 мм2 = 0.000438 м2;
dзi - зазор между микросхемой и ПП, dзi = 0;
lзi - коэффициент теплопроводности материала, заполняющего этот зазор.
Подставляя численные значения в формулу получаем
5. Определяем температуру поверхности корпуса микросхемы
Такая температура удовлетворяет условиям эксплуатации микросхемы DТр = -45....+70 оС, и не требует дополнительной системы охлаждения.
РАСЧЕТ МАССЫ БЛОКА
Исходные данные для расчета:
Масса блока ИС
mис = 24 г = 0.024 кг
Плотность дюралюминия
rдр = 2800 кг/м3
Плотность стеклотекстолита
rСт = 1750 кг/м3
Толщина дюралюминия
hk = 1 мм = 0.001 м
Толщина печатной платы
hпп = 2 мм = 0.002 м
Количество печатных плат
nпп = 60
Количество ИС
nис = 25
РАСЧЕТ СОБСТЕННОЙ ЧАСТОТЫ ПП
Так как в нашей ПП используются однотипные микросхемы равномерно распределенные по поверхности ПП, то для определения собственной частоты колебаний ПП можно воспользоваться формулой для равномерно нагруженной пластины:
где a и b - длина и ширина пластины, a = 186 мм, b = 81 мм;
D - цилиндрическая жесткость;
E - модуль упругости, E = 3.2 × 10-10 Н/м;
h - толщина пластины, h = 2 мм;
n - коэффициент Пуассона, n = 0.279;
М - масса пластины с элементами, М = mпп + mис × 25 = 0.095 + 0.024 × 25 = 0.695 кг;
Ka - коэффициент, зависящий от способа закрепления сторон пластины;
k, a, b, g - коэффициенты приведенные в литературе [1].
Подставляя значения параметров в формулу рассчитываем значение собственной частоты:
РАСЧЕТ СХЕМЫ АМОРТИЗАЦИИ
Исходные данные
Вид носителя - управляемый снаряд
Масса блока m = 42.385 кг
f, Гц
10
30
50
100
500
1000
g
5
8
12
20
25
30
1. Рассчитаем величину вибросмещения для каждого значения f.
так как нам известен порядок Кe » 103, то при минимальной частоте f = 10 Гц
следовательно мы можем рассчитать величину вибросмещения для каждой частоты спектра. Результат расчета представим в таблице:
f, Гц
10
30
50
100
500
1000
g
5
8
12
20
25
30
x, мм
13
2
1
0.5
0.25
0.076
2. Расчет номинальной статической нагрузки и выбор амортизатора.
Так как блок заполнен одинаковыми модулями то и масса его распределена равномерно. При таком распределении нагрузки целесообразно выбрать симметричное расположение амортизаторов. В таком случае очень легко рассчитывается статическая нагрузка на амортизатор:
Исходя из значений Р1...Р4 выбираем амортизатор АД -15 который имеет: номинальную статическую нагрузку Рном = 100....150 Н, коэффициент жесткости kам = 186.4 Н/см, показатель затухания e = 0.5.
3. Расчет статической осадки амортизатора и относительного перемещения блока.
Статическая осадка амортизаторов определяется по формуле:
Для определения относительного перемещения s(f) необходимо сначала определить собственную частоту колебаний системы
и коэффициент динамичности который определяется по следующей формуле
Результат расчета представим в виде таблице
Масса блока m = 42.385 кг
f, Гц
10
30
50
100
500
1000
g
5
8
12
20
25
30
f, Гц
10
30
50
100
500
1000
x(f), мм
13
2
1
0.5
0.25
0.076
m(f)
1.003
1.118
1.414
2.236
4.123
13.196
s(f)= x(f) m(f)
13.039
2.236
1.414
1.118
1.031
1.003
РАСЧЕТ НАДЕЖНОСТИ БЛОКА ПО ВНЕЗАПНЫМ ОТКАЗАМ
Так как носителем нашего блока является управляемый снаряд время жизни которого мало, и схема состоит только из последовательных элементов тот мы принимаем решение не резервировать систему.
Интенсивность отказов элементов с учетом условий эксплуатации изделия определяется по формуле:
где l0i - номинальная интенсивность отказов;
k1, k2 - поправочные коэффициенты в зависимости от воздействия механических факторов;
k3 - поправочный коэффициент в зависимости от давления воздуха;
Значения номинальных интенсивностей отказа и поправочных коэффициентов для различных элементов использующихся в блоке были взяты из литературы [1] и приведены в таблице
Элемент
l0i,1/ч
k1
k2
k3
k4
Микросхема
0,013
1,46
1,13
1
1,4
Соединители
0,062 × 24
1,46
1,13
1
1,4
Провода
0,015
1,46
1,13
1
1,4
Плата печатной схемы
0,7
1,46
1,13
1
1,4
Пайка навесного монтажа
0,01
1,46
1,13
1
1,4
Вероятность безотказной работы в течении заданной наработки tp для нерезервированных систем определяется из формулы:
Среднее время жизни управляемого снаряда не превышает 1...2 минут и следовательно значение P(0.033) = 0.844, что вполне удовлетворяет техническим условиям.
ЛИТЕРАТУРА
1. О. Д. Парфенов, Э. Н. Камышная, В. П. Усачев. Проектирование конструкций радиоэлектронной аппаратуры. “Радио и связь”, 1989 г.
2. Л. Н. Преснухин, В. А. Шахнов. Конструирование электронных вычислительных машин и систем. М. “Высшая школа”, 1986 г
3. В. А. Шахнов. Курс лекций.
![]() |
![]() |
© 2011 Все права защищены |