Элементарные конформные отображения
ЕЛЕЦ
ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ ИНСТИТУТ.
КУРСОВАЯ РАБОТА
ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ
Тема:
«Элементарные конфортные отображения»
Выполнила: студентка группы М-31
физико-математического факультета
Е.Г. Петренко
Научный руководитель:
О.А. Саввина
1998 г.
ЭЛЕМЕНТАРНЫЕ ФУНКЦИИ КОМПЛЕКСНОЙ ПЕРЕМЕННОЙ
Краткая справка. Пусть имеются два множества комплексных точек
и . Если задан закон , ставящий в соответствие
каждому точку
(или точки) , то
говорят, что на множестве задана функция комплексной переменной со
значениями в множестве .
Обозначают это следующим образом: . (Часто говорят также, что отображает множество в множество .)
Задание функции эквивалентно
заданию двух действительных функций и тогда , где , . Как и в обычном анализе, в теории функций
комплексной переменной очень важную роль играют элементарные функции.
Рассмотрим некоторые из них.
1. - линейная функция.
Определена при всех .
Отображает полную комплексную плоскость на полную комплексную плоскость . Функция и обратная ей - однозначны. Функция поворачивает плоскость на угол, равный , растягивает (сжимает)
ее в раз и после
этого осуществляет параллельный сдвиг на величину . Непрерывна на всей комплексной плоскости.
2. .
Определена на всей комплексной плоскости, причем , . Однозначна, непрерывна всюду, за исключением
точки .
Отображает полную комплексную плоскость на полную комплексную плоскость , причем точки, лежащие на
единичной окружности, переходят в точки этой же окружности. Точки, лежащие внутри
окружности единичного радиуса, переходят в точки, лежащие вне ее, и наоборот.
3. -
показательная функция. По определению , т.е. , , . Из определения вытекают формулы Эйлера:
; ; ;
Определена на всей
комплексной плоскости и непрерывна на ней. периодична с периодом . Отображает каждую полосу,
параллельную оси ,
шириной в плоскости в полную комплексную
плоскость . Из
свойств отметим
простейшие: ,
4. -
логарифмическая функция (натуральный логарифм). По определению: . Выражение называется главным значением , так что . Определен для всех
комплексных чисел, кроме .
-
бесконечно-значная функция, обратная к . ,
5. - общая показательная
функция. По определению, .
Определена для всех ,
ее главное значение ,
бесконечно-значна.
6. Тригонометрические функции ;;; По определению, ; ;
;
7. Гиперболические функции. Определяются по аналогии с такими же
функциями действительной переменной, а именно:
,
Определены и непрерывны на всей комплексной плоскости.
Задачи с решением.
1) Найти модули и
главные значения аргументов комплексных чисел: , , , ,
Решение. По определению, ,, ; если , то очевидно, , ,
, ,
,
, ,
,
, ,
Найти суммы:
1)
2)
Решение. Пусть: ,
а
. Умножим вторую строчку на , сложим с первой и,
воспользовавшись формулой Эйлера, получим:
;
Преобразуя, получим:
,
3. Доказать, что: 1) 2)
3) 4)
Доказательство:
1) По определению,
2)
3) ;
Выразить через
тригонометрические и гиперболические функции действительного аргумента
действительные и мнимые части, а также модули следующих функций: 1) ; 2) ; 3) ;
Решение: и, учитывая результаты предыдущего примера,
получим:
, , ,
Напомним, что
2)
, ,
3)
, ,
,
.
Найти действительные и мнимые части следующих значений функций: ; ;
Решение. Следуя решению примера 4, будем иметь:
; ; ; ;
;
Вычислить: 1) ; 3) ; 5) ;
2) ; 4) ; 6) ;
Решение. По определению, ,
1), , ,
2) , , ,
3) , , ,
4), , ,
5), , ,
6), , ,
Найти все значения следующих степеней:
1) ;
2) ; 3) ; 4);
Решение. Выражение для
любых комплексных и
определяются
формулой
1)
2)
3)
4) .
8. Доказать следующие
равенства:
1) ;
2) ;
3)
Доказательство: 1) , если , или , откуда , или .
Решив это уравнение,
получим , т.е. и
2) , если , откуда , или , следовательно,
,
3) , если , откуда , или
.
Отсюда , следовательно,
|
|
|